
06.05.2021, 20:07ProjectsFIT

Page 1 of 1https://projects.fit.cvut.cz/theses/106/assignment-print

Instructions

With growing computational capabilities the field of machine learning has seen rapid development, and

finds applications in many human activities. At the same time enormous effort is devoted to research

quantum computers and algorithms that can potentially outperform their classical counterparts.

The goal of the thesis is to investigate possible application of quantum technologies in machine learning.

Namely, the student will:

a) get acquainted with principles of quantum algorithms and generative adversarial networks (GANs)

b) investigate benefits following from application of quantum technologies in machine learning with

focus on quantum generative adversarial networks (qGANs)

c) develop method that allows incremental learning of qGANs and implement it using Qiskit - open

source software development kit for working with quantum computers

d) test the concept and implementation of qGAN with incremental learning on a specific problem of

probability distribution learning

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 17 February 2021 in Prague.

Assignment of master’s thesis

Title: Incremental Learning of Quantum Generative Adversarial Network

Student: Bc. Artem Kandaurov

Supervisor: Ing. Ivo Petr, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2022/2023

Master’s thesis

Incremental Learning of Quantum
Generative Adversarial Network

Bc. Artem Kandaurov

Department of Computer Science
Supervisor: Ing. Ivo Petr, Ph.D.

May 6, 2021

Acknowledgements

I am incredibly grateful to my supervisor Ing. Ivo Petr, Ph.D. for the great
help with this thesis. This work would not exist without you, thank you very
much! Also, I would like to thank my wife Ekaterina for her care and support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Artem Kandaurov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Kandaurov, Artem. Incremental Learning of Quantum Generative Adversarial
Network. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.

Abstract

Machine learning field has shown incredible impact on many kinds of optimiza-
tion problems. Recently the power of machine learning was applied to speed
up the quantum states preparation. Although approximation with quantum
generative adversarial networks is one of the fastest ways to prepare a generic
quantum state, training time for such models is still significant and can eas-
ily impair quantum advantage. This thesis explores incremental learning of
quantum generative adversarial networks for the quantum states preparation
problem and introduces learning use cases reducing the training time.

Keywords Quantum generative adversarial network, Incremental learning,
Quantum state preparation, Quantum machine learning, QGAN

vii

Abstrakt

Obor strojového učeńı ukázal neuvěřitelný dopad na mnoho druh̊u optima-
lizačńıch problémů. Nedávno byla śıla strojového učeńı použita k zrychleńı
př́ıpravy kvantových stav̊u. Navzdory skutečnosti, že aproximace stavu pomoćı
kvantové generativńı soupeř́ıćı śıtě je jeden z nejrychleǰśıch zp̊usob̊u př́ıpravy
generického kvantového stavu, doba trénovańı pro takové modely je významná
a může snadno eliminovat výhody plynoućı z použit́ı kvantového algoritmu.
Tato práce zkoumá využit́ı inkrementalńı učeńı kvantové generativńı soupeř́ıćı
śıtě pro problém nahráńı kvantových stav̊u a ukazuje nové př́ıpady použit́ı v
nichž se zkracuje trénovańı modelu.

Kĺıčová slova Kvantová generativńı soupeř́ıćı śıt’, Inkrementálńı učeńı,
Nahráńı kvantového stavu, Kvantové strojové učeńı

viii

Contents

Introduction 1

1 Basics of Quantum Computation 3

1.1 Quantum Information . 3
1.2 Quantum Computation . 5

1.2.1 Hadamard gate . 5
1.2.2 Pauli rotation gates . 5
1.2.3 Controlled Pauli rotation gates 6
1.2.4 Quantum circuit . 7

2 Quantum Machine Learning 9

2.1 Variational Circuits . 9
2.2 Generative Adversarial Network 10
2.3 Quantum Generative Adversarial Network 12

3 Incremental Quantum Generative Adversarial Network 15

3.1 Training Data . 16
3.1.1 Stationary process . 16
3.1.2 Non-stationary process 16

3.2 Generator . 17
3.3 Discriminator . 18
3.4 Optimizer . 18
3.5 Learning . 19

3.5.1 Stationary process learning 19
3.5.2 Non-stationary process learning 20

4 Probability Distribution Learning Problem 21

4.1 Definition . 21
4.2 Data . 22
4.3 Applications . 23

ix

5 Results 25

5.1 Implementation . 25
5.1.1 Model . 25
5.1.2 Test environment . 27

5.2 Tests . 27
5.2.1 Stationary process learning 28
5.2.2 Non-stationary process learning 31

5.3 Applications . 34

Conclusion 35

Bibliography 37

A Influence of the learning rate parameter 41

B Experiments with noisy quantum simulator 45

C Contents of enclosed flash disk 47

x

List of Figures

1.1 Bloch sphere representation of a qubit. 4
1.2 Quantum circuit representing uniform probability distribution with

entangled qubits. 7

2.1 Quantum variational circuit based on Pauli-Y and CZ gates, num-
ber of qubits n = 3 and generic depth k. 10

2.2 Generative adversarial network structure. 11
2.3 Quantum generative adversarial network structure. 12

3.1 Quantum generator with uniform initial state, number of qubits
n = 3 and depth k = 2. 18

5.1 Histogram of discretized samples taken from log-normal distribu-
tion, µ = 1 and ‡ = 1. 28

5.2 Data relative entropy for the stationary process learning test case. 29
5.3 Relative entropy for the stationary process learning test case. . . . 29
5.4 Real relative entropy for the stationary process learning test case. 30
5.5 Comparison of incremental and original learning methods for the

stationary process learning test case. 30
5.6 Histogram of discretized samples taken from log-normal distribu-

tion, µ = 2 and ‡ = 1. 31
5.7 Data relative entropy for the non-stationary process learning test

case. 32
5.8 Relative entropy for the non-stationary process learning test case. 32
5.9 Real relative entropy for the non-stationary process learning test

case. 33

A.1 Real relative entropy for the stationary process learning test case
with variable learning rate parameter. 41

A.2 Relative entropy for the non-stationary process learning test case
with variable learning rate parameter. 42

xi

A.3 Real relative entropy for the non-stationary process learning test
case with variable learning rate parameter. 42

B.1 Data relative entropy for the stationary process learning test case
performed with a noisy quantum simulator. 45

B.2 Relative entropy for the stationary process learning test case per-
formed with a noisy quantum simulator. 46

B.3 Real relative entropy for the stationary process learning test case
performed with a noisy quantum simulator. 46

xii

Introduction

Quantum computing is nothing more than quantum mechanics e�ects used for
developing algorithms, but such techniques applied to algorithmic problems
have shown a fabulous outcome. Quantum algorithms already outperformed
their classical counterparts for some tasks and even demonstrated exponential
speed up [1]. Present quantum computers are still far from solving real prob-
lems, but the fairy tale will come true sooner or later, and quantum computing
will become as common as classical computing. However, there are theoretical
and practical challenges to be solved first.

One of the challenges is the e�cient loading of classical data that we want
to process on a quantum computer into quantum states. Quantum algorithms
obviously work only with quantum data, but the complexity of quantum state
preparation can diminish or completely eliminate potential quantum advan-
tage. Loading particular generic state in n qubits requires O(2n) gates [2].
Fortunately, there is no need to load exact quantum states. For example,
quantum amplitude estimation algorithm [3] or quantum algorithm for solving
linear systems of equations [4] require only a fair approximation of a quan-
tum state. Furthermore, quantum computers also produce errors, and loading
exact quantum states under these conditions does not make sense.

Machine learning adapted to quantum computers can be used to prepare
approximated quantum states. Quantum generative adversarial networks [5]
are already being used for quantum states estimation [6] and loading proba-
bility distributions into quantum registers [7]. It is a very new and promising
branch of quantum machine learning that significantly decreases the complex-
ity of preparing generic states up to O(poly(n)) gates [7].

However, some of these gates, named Pauli rotation gates, have variable
parameters that should be trained. The training time is the main disadvan-
tage of using quantum generative adversarial networks for quantum states
loading [8]. This work explores incremental learning of quantum generative
adversarial networks that could significantly reduce the training time in real-
world scenarios.

1

Chapter 1
Basics of Quantum

Computation

Quantum computing is a potent instrument that uses quantum physical fea-
tures to perform computations. The most important quantum mechanical
e�ects used in quantum computing are superposition, i.e., the ability of quan-
tum states to be added together forming another valid quantum state, and
entanglement, i.e., interaction of quantum particles making their properties
perfectly correlated. These e�ects are crucial for quantum computing and help
quantum algorithms outperform the best known classical algorithms. But first
things first.

1.1 Quantum Information

Bit is a classical information unit. Quantum information di�ers from the
classical one and operates with qubits, i.e., quantum bits. Qubit is defined
as an element of two-dimensional Hilbert space H and can be expressed as
linear combination of computational basis states that are denoted as |0Í and
|1Í. Here |0Í and |1Í are quantum states in the Dirac notation [9] that will
always be measured to classical 0 and 1 respectively.

|�Í = – |0Í + — |1Í (1.1)

Measurement is a distinguished operation in quantum computing because
it changes the state of a qubit. After measurement, qubit collapses into a com-
putational basis state with probability |k|2, where k œ C, called amplitude, is
the coe�cient in the linear combination of the computational basis state. For
example, qubit |�Í from equation 1.1 will be measured as |0Í with probability
|–|2 or as |1Í with probability |—|2. Obviously, a sum of all probabilities should

3

1. Basics of Quantum Computation

be equal to one.

|–|2 + |—|2 = 1 (1.2)

The qubit |�Í can be written in a vector notation as [– —]T . As the sum of
squared absolute values of coe�cients has to be 1, any valid qubit also can be
represented as a point on a sphere, so-called Bloch sphere [10]. Equation 1.3
is the geometric notation of a qubit defined by parameters ◊ œ R and Ï œ R.

|�Í = cos
◊

2 |0Í + e
iÏ

sin
◊

2 |1Í (1.3)

Figure 1.1 shows a visual representation of a Bloch sphere. Note that any
point on a sphere can be defined by only two angle parameters.

Figure 1.1: Bloch sphere representation of a qubit.

Qubits can be combined into a quantum register to form a quantum state,
e.g., |00Í, also can be denoted as

--02,
. More generally, quantum state defined

by a quantum register consisting of n qubits is an element of tensor product
H = Hn≠1 ¢ ... ¢ H0 and thus is specified by 2n amplitudes [10].

The mathematical definition of a qubit allows it to be in a superposition
of basis states, but does it exist in the real world? Physically qubit can be
represented with quantum particles, e.g., photons polarization angle or elec-
tron levels in an atom. The field of quantum computer building is developing
very quickly, and recently a quantum computer implemented via acoustic res-
onators was presented [11]. The physical structure of quantum computers is
another fascinating topic, but it is out of the scope of this thesis.

4

1.2. Quantum Computation

1.2 Quantum Computation
Operation on a qubit or multiple qubits is called a gate. Due to postulates of
quantum mechanics, every gate has to be unitary operator that can be repre-
sented as unitary matrix. There are many gates defined, e.g., Hadamard gate,
To�oli gate, or Pauli rotation gates. Actually, any unitary matrix specifies a
valid quantum gate [10]. Thus there are infinitely many quantum gates, but
the gates mentioned in this thesis are reviewed below.

1.2.1 Hadamard gate

The Hadamard gate (H) is a unary operation that is often used for superpo-
sition creating. The operation matrix is presented in equation 1.4.

H = 1Ô
2

C
1 1
1 ≠1

D

(1.4)

Equations 1.5 and 1.6 refer to common quantum states denoted as |+Í
and |≠Í for simplicity. These states represent superposed quantum states
with equal probabilities of measuring |0Í or |1Í basis state.

|+Í = 1Ô
2

(|0Í + |1Í) (1.5)

|≠Í = 1Ô
2

(|0Í ≠ |1Í) (1.6)

The Hadamard gate applied on the quantum state |0Í maps it to the |+Í
state and applied on the quantum state |1Í maps it to the |≠Í state. These
facts are demonstrated by equations 1.7 and 1.8. These are the most common
examples, but quantum gates can be applied to any valid quantum state.

H |0Í = 1Ô
2

C
1 1
1 ≠1

D C
1
0

D

= |+Í (1.7)

H |1Í = 1Ô
2

C
1 1
1 ≠1

D C
0
1

D

= |≠Í (1.8)

1.2.2 Pauli rotation gates

Pauli rotation gates (RX, RY, RZ) have an input parameter ◊ with rotation
angle about x, y, or z axis according to the gate. Operations matrices are
presented in equations 1.9, 1.10, and 1.11.

RX(◊) =
C

cos(◊
2) ≠i · sin(◊

2)
≠i · sin(◊

2) cos(◊
2)

D

(1.9)

5

1. Basics of Quantum Computation

RY (◊) =
C
cos(◊

2) ≠sin(◊
2)

sin(◊
2) cos(◊

2)

D

(1.10)

RZ(◊) =
C
e

≠i ◊
2 0

0 e
i ◊

2

D

(1.11)

Any quantum state can be prepared using Pauli rotation gates [10]. In
fact, the Hadamard gate can be replaced with two rotation gates.

1.2.3 Controlled Pauli rotation gates

Controlled Pauli rotation gates (CX, CY, CZ) act on two qubits, where the
first one acts as a control for applying a rotation operation on the second one.
The operation is only performed if a control qubit is |1Í; otherwise, the gate has
no e�ect. Controlled Pauli rotation gates can be parametrized the same way
as the original Pauli rotation gates, but by default, they rotate a quantum
state by fi radians around the axis. Operations matrices are presented in
equations 1.12, 1.13, and 1.14.

CX =

S

WWWU

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

T

XXXV (1.12)

CY =

S

WWWU

1 0 0 0
0 1 0 0
0 0 0 ≠i

0 0 i 0

T

XXXV (1.13)

CZ =

S

WWWU

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ≠1

T

XXXV (1.14)

Controlled gates applied on two qubits can entangle them, making them
perfectly correlated. For example, perfectly correlated Bell state [12] from
equation 1.15 can be easily created with controlled Pauli-X gate applied on
|+Í control qubit and |0Í target qubit.

---�+
f

= 1Ô
2

(|00Í + |11Í) (1.15)

6

1.2. Quantum Computation

1.2.4 Quantum circuit
Quantum circuit is an ordered set of gates applied on quantum and classical
registers. Most often, the resulting quantum state is measured at the end of
quantum circuit. After measurement qubits are collapsed to |0Í or |1Í and
result of the measurement, i.e., 0 for |0Í and 1 for |1Í, is written into assigned
classical register. Measurement is a non-unitary operation and cannot be
reverted.

Elementary example of a quantum circuit is showed in figure 1.2. The
circuit is read from left to right. Initial quantum state |00Í is transformed
into superposition with Hadamard gates mapping it to H |0Í ¢ H |0Í. Then
the qubits are entangled with controlled Pauli-Z gate. Resulting state of the
quantum circuit before measurement is [0.5 0.5 0.5 ≠0.5]T . Note that every
measurement of the state is equivalent to generating samples from a uniform
probability distribution defined for values 0, 1, 2, and 3.

Figure 1.2: Quantum circuit representing uniform probability
distribution with entangled qubits.

Vertical dotted lines, so-called barriers, are used for separation gates for
the transpiler. The transpiler works with separated parts of quantum circuit
individually without optimization. Also, barriers are used for visual separation
of di�erent parts of a quantum circuit.

7

Chapter 2
Quantum Machine Learning

Quantum machine learning is a very new and promising branch of the quantum
computation field. Many new algorithms were developed recently, but mostly
they are quantum adaptations of existing machine learning algorithms. Gen-
erally, quantum machine learning algorithms can be divided into quantum
algorithms, hybrid classical-quantum algorithms, and classical algorithms ap-
plied to some quantum computation problems.

Pure quantum algorithms are based on existing quantum computation
techniques to speed up calculations, e.g., quantum amplitude amplification or
solving linear systems of equations algorithm. For example, pure quantum ma-
chine learning Bayesian inference algorithm [13] uses both techniques. Quan-
tum generative adversarial network [5] is a good example of hybrid algorithms;
it combines both quantum and classical parts. Classical machine learning, for
example, can be used for optimizing settings for Bell non-locality [14].

Of course, the quantum machine learning field will expand with new al-
gorithms and approaches. Quantum machine learning will probably take a
more significant place in the quantum computation field than classical ma-
chine learning in classical computer science, primarily because of the quantum
devices limitations.

2.1 Variational Circuits

One of the most important concepts in hybrid quantum-classical machine
learning is quantum variational circuit, i.e., parametrized circuit. The circuit
has a set of variable parameters that can be optimized during the learning
process.

Quantum variational circuit consists of repeated parametrized rotation
gates and entanglement blocks. Rotations are performed with RX, RY, or
RZ gates. Thus optimizing parameters are rotation angles in radians. The
rotation gates can be combined to add another degree of freedom, but it

9

2. Quantum Machine Learning

increases the circuit’s optimization complexity. Qubits entanglement can be
made with any controlled gates. Most often, CZ or CX gates are used.

Figure 2.1: Quantum variational circuit based on Pauli-Y and
CZ gates, number of qubits n = 3 and generic depth k.

Figure 2.1 presents a quantum variational circuit that is built with RY and
CZ gates. The advantage of the circuit’s architecture based on RY and CZ

gates is that the circuit does not change initial quantum state with nullified
parameters. Thus any loaded initial quantum state can be used as a starting
point for further optimization.

Depth of the circuit refers to the number of entanglement and rotation
blocks repetitions. Enlarged depth adds more variable parameters and, there-
fore, increases the circuit’s optimization complexity. The complexity of the
parametrized circuit should be tuned according to the optimization problem.
In this sense, the quantum variational circuit’s complexity is similar to ar-
tificial neural network architecture. With the parametrized circuit, the op-
timization problem is reduced to the approximation of rotation angles. The
parameters can be trained with any classical optimization algorithm, for ex-
ample, ADAM [15].

2.2 Generative Adversarial Network
Generative adversarial network [16] is a machine learning model. The main
idea behind generative adversarial networks is training two neural networks
contesting with each other. The first one, so-called generator, captures data
distribution, and the second one, so-called discriminator, estimates the prob-
ability that a sample came from the training data rather than the generator.
Both neural networks are parametrized with real vectors: the generator’s pa-
rameters ◊g and the discriminator’s parameters ◊d.

The training process corresponds to a minimax two-player game. The
generator G◊g receives noise vector z taken from a prior distribution pprior
as input and produces data sample G◊g (z). The discriminator D◊d

receives
training data from a real distribution preal mixed with samples from the gen-

10

2.2. Generative Adversarial Network

erator and returns a probability D◊d
(x) that passed sample is real. Then,

the discriminator aims to maximize the probability of assigning the correct
label to generated and real samples, and the generator simultaneously aims to
minimize the discriminator’s ability to detect generated samples. The model’s
training process is demonstrated in figure 2.2.

Figure 2.2: Generative adversarial network structure.

The discriminator, defined by parameters ◊d, and the generator, defined
by parameters ◊g, are trained simultaneously with a gradient calculated from
equation 2.1. In practice, ADAM optimizer [15] can be used for the updating
steps.

min
◊g

(max
◊d

(Ex≥preal [log D◊d
(x)] + Ez≥pprior [log

1
1 ≠ D◊d

(G◊g (z))
2
])) (2.1)

The minimax game target was defined for the original generative adver-
sarial network. However, there are many modifications of loss functions. For
example, non-saturating approach changes the generator’s loss function to
≠ log D◊d

(G◊g (z)) to avoid stagnation early in learning.
Generative adversarial networks showed incredible results and significantly

a�ected the machine learning field. Many modifications of the original algo-
rithm were developed, e.g., conditional generative adversarial networks [17],
stacked generative adversarial networks [18], cycle-consistent generative ad-
versarial networks [19] and others.

11

2. Quantum Machine Learning

2.3 Quantum Generative Adversarial Network

Quantum generative adversarial network [5][6] is a very new algorithm. Quan-
tum modification of the generative adversarial network was presented in dif-
ferent architectures: input data, generator, and discriminator can be defined
as quantum or classical. This thesis aims to speed up quantum state, i.e.,
quantum generator, preparation with classical data, so the architecture with
classical input data, quantum generator, and classical discriminator is consid-
ered.

The idea behind adversarial learning remains the same. The generator and
the discriminator are trained simultaneously, contesting with each other. The
main di�erence is that the generator is represented by a quantum variational
circuit applied to some initial quantum state. The quantum variational circuit
is defined by a vector of parameters ◊g that are angles in radians for the
rotation gates. The parameters can be trained on the classical computer
with any gradient-based optimization algorithm. The discriminator for the
quantum version of the generative adversarial network can remain the same
as for the original model.

|�Í =
2n≠1ÿ

j=0

Ò
P (bj) |bjÍ (2.2)

The main aim of generative adversarial networks is to train a generator
to approximate the underlying process preal. Generic quantum generator’s
output is defined in equation 2.2, where n is the number of qubits and P (bj)
is the probability of measuring the basis state |bjÍ. Then, the learning target
is to approximate output probabilities of each basis state.

Figure 2.3: Quantum generative adversarial network structure.

12

2.3. Quantum Generative Adversarial Network

To generate a data sample it is enough to measure the quantum generator’s
output |�Í. Measured data g are purely classical and correspond to the trained
probabilities.

Figure 2.3 demonstrates the model’s learning process. In fact, quantum
generative adversarial networks are more natural because a quantum generator
does not require a randomized input. Stochasticity of the output is based on
the quantum measurement uncertainty.

The gradient for updating the generator’s and the discriminator’s param-
eters is calculated basing on the loss functions.

LG(◊g, ◊d) = ≠E[log(D◊d
(g))] (2.3)

LD(◊g, ◊d) = Ex≥preal [log D◊d
(x)] + E[log(1 ≠ D◊d

(g))] (2.4)

Equation 2.3 refers to the generator’s non-saturating loss function and
equation 2.4 to the discriminator’s loss function. However, the loss functions
can be changed the same way as for the classical generative adversarial net-
work.

13

Chapter 3
Incremental Quantum

Generative Adversarial Network

State of the art in theoretical quantum computing requires a creative approach
for solving real problems with currently available quantum devices. The idea
of quantum states approximation using quantum generative adversarial net-
works [20] significantly reduced the complexity of quantum state preparation.
However, the time needed for quantum generative adversarial network training
is still the issue.

The main aim of incremental learning exploration in this thesis is to
speed up quantum state preparation, i.e., preparation of qubits in a quantum
generator. Parameters of a generator can be updated via gradient descent
with a classical discriminator on a classical computer [6]. That is why from
here, only quantum generative adversarial network architecture with a quan-
tum generator and a classical discriminator will be considered. But what is
incremental learning?

Incremental learning is a training method in machine learning in which
training data are passed to the model gradually when new samples become
available. This approach considers data streams in contrast with a traditional
assumption of complete data availability. Incremental learning can be helpful
in changing environments or for lifelong learning and is more natural for real-
time problems.

Quantum generative adversarial network, as a modification of classical gen-
erative adversarial network, inherently supports incremental learning. How-
ever, there are many concerning issues about its configuration, learning tech-
niques, and possible advantages of incremental learning. Theoretically, incre-
mental learning applied on a quantum generative adversarial network can lead
to a significant reduction of the training time in real-world learning scenar-
ios [7]. The contribution of this thesis proves this statement and also describes
some compelling use cases.

15

3. Incremental Quantum Generative Adversarial Network

3.1 Training Data

Any incremental learning scenario assumes the existence of a data stream with
constantly arriving data [24]. This data stream represents some unknown
underlying process, e.g., probability distribution. The quantum generative
adversarial network aims to approximate the underlying process.

In the case of incremental learning, a target state should not be defined
on the initialization but can depend on the online data source and vary over
time. New data from the data stream can be used to specify the generator’s
parameters to meet the unaltered underlying process or modify them to be
up-to-date with the time-varying underlying process. In other words, training
strategy depends on the stationarity of the underlying process.

3.1.1 Stationary process

Stationary process is a process whose parameters do not change over time.
A good example of a stationary process is samples generation from a proba-
bility distribution with constant parameters. Although the generated values
may di�er, the parameters of the underlying process remain the same. This
property ensures the immutability of the process during samples generation
and, therefore, during incremental learning. Stationary processes are sim-
ple and straightforward for understanding. However, there are some open
questions in the context of incremental learning. Section 3.5.1 explains its
specificities.

For applying a quantum algorithm in the real world, a quantum state with
actual data may be needed, e.g., application of quantum amplitude estima-
tion algorithm for the option pricing [8]. The time needed for collecting a
big enough training dataset can prevail over speed-up obtained from quantum
state approximation with a quantum generative adversarial network. The re-
quired size of the training dataset can be enormous, depending on the problem
itself, data dimension, number of possible states, and the process complexity.

Incremental learning allows not to have all the data at the very begin-
ning but update the initial dataset with new samples gradually. The larger
the training dataset becomes, the more precisely the target state is defined.
Instead of being idle while collecting data, quantum generative adversarial
network could approximate an insu�ciently accurate target state. In the
overwhelming majority of cases, the quantum state will converge to the target
reducing the relative entropy between actual and wanted quantum states.

3.1.2 Non-stationary process

Non-stationary process is, obviously, a process whose parameters are varying
in time. Sometimes non-stationary process refers to the term concept drift.
A straightforward example of a non-stationary process is samples generation

16

3.2. Generator

from di�erent probability distributions depending on time. Changing the un-
derlying process parameters, the target state also changes. Changes can be
gradual or abrupt; also, they can be only in a specific region of data space [24].
Section 3.5.2 describes the details about the non-stationary process learning.

Learning of such a process makes sense in the context of lifelong learn-
ing [24], i.e., continuous model updating with the new data received from a
data stream. This technique requires training data prioritizing according to
the time – the latest samples represent a more relevant data stream. Lifelong
learning of a non-stationary process in the context of quantum generative ad-
versarial networks allows having a relevant approximated quantum state at
any time step during incremental learning. For some use cases, e.g., in the
quantum finance field, it can completely reduce quantum state preparation
complexity.

3.2 Generator

Incremental learning does not require any changes in the quantum generator’s
architecture. However, it is crucial to set up a quantum generator according
to the problem. The quantum generator is a variational circuit applied on
some prepared initial state, so the most significant parameters are depth and
initial state. Section 2.1 provides more information about variational quantum
circuits.

Underlying process complexity and data dimension, i.e., the number of
qubits, are given by the problem, but other parameters heavily depend on
them. Comparison of di�erent depth and initial state parameters for quan-
tum generative adversarial networks applied on a quantum state preparation
problem can be found in paper [7].

Depth polynomially increases the number of optimizing parameters and
should reflect the problem’s complexity. More formally, depth k acting on n

qubits of a variational circuit configured with one rotation gate per depth’s
layer has n(k + 1) parameters in total. Basically, the larger is data dimension
and the more complex is underlying process, the greater the quantum gener-
ator’s depth should be. On the other side, the quantum generator should not
overpower the classical discriminator, so the depth constant should be chosen
wisely.

The initial state of the quantum generator is also important, but primarily
for stationary process learning. The choice very much defines the training time
to reach acceptable relative entropy. Basically, the closer is initial state to the
target distribution preal, the faster acceptable result will be reached. However,
in the context of non-stationary process learning, the initial state plays a role
only at the beginning and practically does not a�ect the lifelong learning
process.

17

3. Incremental Quantum Generative Adversarial Network

For example, uniform probability distribution can be a good initial state.
Uniform distribution has the advantage that it is e�ortless to prepare using
a quantum circuit because Hadamard gates applied to all |0Í qubits generate
fair uniform distribution. Figure 3.1 presents the quantum generator circuit
on three qubits with the uniform initial state followed by the parametrized
two-layers circuit based on RY and CZ gates.

Figure 3.1: Quantum generator with uniform initial state,
number of qubits n = 3 and depth k = 2.

3.3 Discriminator

The discriminator should distinguish between real data and generated sam-
ples and be able to improve its accuracy. Another essential requirement is
providing a gradient which the generator can use for gradient-based learning.
The discriminator used in the experiments is a classification neural network.
The most significant tunable parameter in the context of incremental learning
is the neural network’s architecture.

Architecture of the neural network, meaning the number of hidden layers
and nodes, is very similar to a quantum generator’s depth. The complexity
of a quantum generator and a classical discriminator should be balanced for
e�ective adversarial learning. Moreover, both should meet the problem at
hand. There is no optimal quantum generator’s or classical discriminator’s
architecture because it is neither apriori clear what structure is the most
suitable for a given problem [7].

3.4 Optimizer

The parameters of a quantum generator and a classical discriminator should
be optimized during adversarial learning. This thesis uses AMSGRAD op-
timizer [25]. The optimizer has many configurable parameters and can be
perfectly tuned according to the task, but the most interesting parameter for
the incremental learning case is the learning rate parameter. The parameter

18

3.5. Learning

defines the step size at each iteration while moving toward a minimum of a
loss function [26].

Appendix A shows experiments results with variable learning rate for the
stationary and non-stationary test cases. It follows from the experiments that
the learning rate parameter can significantly a�ect the training process and,
therefore, should be chosen carefully. Basically, lower learning rate causes
slower converge to the target, but higher learning rate has a risk of fast di-
verging from the local optimum.

3.5 Learning
Implementation details of the incremental learning modification of a quantum
generative adversarial network are described in section 5.1.1. The contribution
of this thesis supports both stationary and non-stationary process learning.
However, learning methods significantly di�er depending on the underlying
process type.

3.5.1 Stationary process learning
The main aim of incremental learning is the e�cient usage of available re-
sources when working with a data stream. The most important resources for
the stationary process learning case are training time and storage space. The
entire learning process will be reviewed regarding these parameters.

First of all, initial training data should be collected to start incremental
learning. The sooner the quantum generator’s state starts moving to the
target, the earlier wanted relative entropy will be reached. On the other
hand, optimizing a poor target state can diverge from a solution. Ordinarily,
it is enough to collect only a few data batches, but the initial dataset size
should be chosen according to the underlying process.

One of the main incremental learning features is updating a training dataset
during training itself. After each update operation, the target state changes
and loss functions gradients should be recalculated. Because of potentially
endless data streams, it makes sense to define the stop training condition
as reaching the wanted relative entropy value and check it after each training
epoch and update operation. As soon as the target relative entropy is reached,
the training process stops. It automatically continues in the case if another
update operation increases relative entropy above the threshold.

With unlimited update potential, memory issue comes to the fore. Unlike
the non-stationary process learning case, all provided data are relevant for the
underlying process and, therefore, should be stored. For the problems with re-
peating data samples, e.g., probability distribution learning problem, a great
solution is storing a frequency histogram instead of storing all provided sam-
ples. Such an approach significantly reduces using storage space and provides
all the information as usual data stack.

19

3. Incremental Quantum Generative Adversarial Network

Incremental learning modification of a quantum generative adversarial net-
work provides an opportunity to specify the target state without losing previ-
ously passed data samples and trained generator’s and discriminator’s param-
eters. One of the main advantages over the original learning process is that
there is no need to wait while collecting data from a data stream. It signif-
icantly reduces training time in real-world scenarios and provides impressive
outcomes. Experiments results can be found in section 5.2.

3.5.2 Non-stationary process learning
Non-stationary process learning di�ers from the stationary one because un-
derlying process parameters can change anytime, making collected samples
irrelevant. Let data stream s sequentially provide data samples s1, s2, ..., sn,
where sn is the latest available sample. The number of considered samples
can be limited to predefined constant l, keeping in the memory only l latest
samples: sn≠l+1, ..., sn. The oldest data samples will be driven out by the
new ones passed through the update operation. Such a technique resolves the
irrelevant training data issue providing a reasonably chosen data stack size
limit constant.

Unlike the stationary process learning case, time spent for initial training
dataset collecting is not crucial for lifelong learning. The initial dataset size
can be equal to the data stack limitation constant in the general case.

Lifelong learning of a non-stationary process aims to have a relevant quan-
tum state at any learning time step. Therefore, the trained quantum state
should be quickly adapted in a changing environment to keep relative entropy
at an acceptable level. Thus an increased learning rate, as discussed in sec-
tion 3.4, can be extremely helpful. Also, the stop condition based on the
reached relative entropy can be used to prevent trained distribution diver-
gence. The update interface of the implemented model allows to change the
target relative entropy during training.

20

Chapter 4
Probability Distribution

Learning Problem

This chapter describes the problem of loading random probability distribution
into quantum state [7]. Underlying processes defined in sections 3.1.1 and 3.1.2
can be represented by some unknown probability distribution. Then the data
stream contains samples generated from the unknown probability distribution.
The sample generation process can be equivalently represented by measuring
a quantum state because a quantum state has defined measuring probabilities
for each basis state. Thus the problem of loading random probability distribu-
tion into a quantum state is quantum state approximation based on provided
data samples from a data stream. Quantum state amplitudes and basis states
should be adjusted to the underlying process, i.e., unknown probability dis-
tribution.

The loading random probability distribution problem is used to present
the advantages of incremental learning for quantum generative adversarial
network. However, described incremental learning features can be applied to
any quantum state learning problem.

4.1 Definition

Let X = {x1, ..., xk} be a list of each possible value of some discrete probability
distribution, where event xj occurs with probability P (xj). Of course, the
normalization condition from equation 4.1 should be met.

ÿ

xœX

P (x) = 1 (4.1)

To represent generic discrete probability distribution with a quantum state,
the number of its basis states 2n, where n is the number of qubits, should be
greater or equal to k. If the number of basis states is greater than k, then

21

4. Probability Distribution Learning Problem

occurrence probabilities of unused basis states should be nullified. Then the
problem can be defined as an approximation of a quantum state with corre-
sponding probabilities.

|�Í =
2n≠1ÿ

j=0

Ò
P (xj) |xjÍ (4.2)

Equation 4.2 defines the target state, where P (xj) is a probability of oc-
currence of a basis state |xjÍ representing an event xj œ X. The aim of the
quantum generative adversarial network training is to approximate this target
state.

The number of basis states is defined by the number of qubits specified
on the quantum generative adversarial network initialization. The number of
qubits defines a quantum generator and cannot be changed during the learning
process. Thus the dimension of a problem should be defined before the model’s
initialization and remain constant throughout the entire learning process.

The resulting state of a quantum variational circuit, i.e., quantum genera-
tor, can be modified by an optimizer changing the parameters of Pauli rotation
gates. Then the target state approximation problem is reduced to optimizing
a set of parameters ◊.

G◊ |�inÍ = |�Í (4.3)

Equation 4.3 represents optimization target, where G◊ is the parametrized
matrix of all quantum generator’s gates and |�inÍ is initial quantum state. The
initial quantum state is defined as |0nÍ on most quantum devices, but theo-
retically can be any valid quantum state. The matrix G◊ can di�er depending
on initial probability distribution and the variational circuit architecture, but
it should be parametrized.

4.2 Data
Described problem considers only discrete probability distributions. Since
the underlying process is unknown, the probabilities of each state occurrence
should be estimated from a training dataset. The more examples taken from
a relevant underlying process are provided to the model, the more precisely
the probabilities are calculated. In other words, relative entropy between the
model’s target and unknown distribution reduces as more samples become
available.

DKL(P Î Q) =
ÿ

xœ‰

P (x) log
3

P (x)
Q(x)

4
(4.4)

Relative entropy, also called Kullback-Leibler divergence [27], measures
the informational distance between two probability distributions defined on

22

4.3. Applications

the same probability space. Equation 4.4 defines relative entropy between
probability distributions P and Q defined on the probability space ‰.

Relative entropy is used for presenting testing results in chapter 5. There
are three considered types of relative entropy in this thesis. “Relative en-
tropy” refers to relative entropy between a probability distribution calculated
from data samples generated by the actual quantum generator and a prob-
ability distribution calculated from the model’s training dataset. In other
words, relative entropy shows the distance between actual and target quan-
tum states. However, in case of incremental learning, the model’s target state
is not constant and can be changed. “Real relative entropy” measures relative
entropy between a probability distribution calculated from data samples gen-
erated by the actual quantum generator and the unknown target probability
distribution that can be optionally defined for the experiment. “Data relative
entropy” is relative entropy between a probability distribution calculated from
the model’s training dataset and the unknown target probability distribution.
The unknown target probability distribution is used only for receiving more
information from experiments and is not used in the training process.

4.3 Applications
Probability distribution loaded into a quantum state can be used in the quan-
tum amplitude estimation algorithm that provides a quadratic speedup com-
pared to classical Monte Carlo methods. Any optimization problem based on
the quantum amplitude estimation algorithm can use loaded probability dis-
tribution. The most interesting practical application based on the algorithm
is option pricing [8].

23

Chapter 5
Results

Main contribution of this thesis is the implementation of a quantum generative
adversarial network supporting incremental learning methods. The project
was forked from the quantum generative adversarial network for learning and
loading random distributions [7], and test cases are based on the probability
distribution learning problem. However, the learning methods described in
this thesis are applicable for any problem of a quantum state approximation
using quantum generative adversarial networks.

5.1 Implementation

The project is divided into two parts: the implementation itself and the test
environment. Both are available at the project’s repository [23]. The im-
plementation instruments are Python and its packages for machine learning
(NumPy [21]) and quantum computing (Qiskit [22]).

5.1.1 Model

The implemented modification of a quantum generative adversarial network
is compatible with all incremental and online learning scenarios. The model
class is called IQGAN and exhibits the interface for incremental learning.
This section provides a review of the most significant changes made to the
original algorithm.

The stop training condition by the number of epochs was replaced with
a required parameter of a target relative entropy. The parameter is called
target rel ent and should be provided on the initialization. The training stops
in case of relative entropy between trained quantum state and target dataset
dropping below the provided target value. Because the target dataset is not
constant, the learning process will automatically continue if relative entropy
raises above the target value after the update operation. Furthermore, target

25

5. Results

relative entropy can be changed during learning according to the changing
environment.

The original algorithm could calculate data bounds and data dimension
based on provided complete training dataset. Because incremental learning
does not suppose data availability at the beginning, data shape should be
defined on the initialization manually. Moreover, updating a training dataset
should follow the defined data shape because the model’s architecture can-
not be changed during the learning process. Thus the model’s parameters
num qubits and bounds should be specified on the model’s initialization.

The data stack size limit parameter called max data length can be op-
tionally specified on the initialization. The parameter can be used for limiting
memory complexity or learning concept drift underlying processes as described
in section 3.5.2. Before reaching the limit size, the stack behaves ordinarily;
after reaching the limit size, the oldest samples are replaced first.

The new option of storing training data as a frequency histogram instead
of samples stack is introduced. This approach reduces memory complexity
for many problems because every data sample is stored just once, and only
its counter increases. This option is enabled by freq storage parameter, but
data samples should be comparable for storing with frequency histogram. The
update operation also supports both storage policies.

The incremental model is much more dynamic than the original one, so it
was updated to receive operations during the learning process. Multithread-
ing allows the training process to be stopped or started anytime with new
exposed operations: stop training and train . The training stops at the end
of the epoch after receiving the stop operation because of logging consistency
and thread-safety reasons. The start operation resumes the learning process
starting from the next epoch.

The new update operation expands the training dataset with the new
data samples. The operation is called update and takes a dataset with new
samples as an input. Optionally, the new target relative entropy can be spec-
ified. The data should be truncated and discretized to the bounds and the
dimension before merging, this is done inside the function. Also, the update
operation manages frequency histogram and limited data stack, if specified.
Updating the training dataset a�ects the learning process only from the next
epoch since the operation was received. The data will be shu�ed before the
learning continues. Otherwise, the training process mostly remains the same
because of the model’s external dependency on the quantum generator and
classical discriminator. More about generator and discriminator setting up
can be found in sections 3.2, 3.3, and 3.4.

In addition to important changes regarding the learning process, features
for testing simplification were added as well. For example, unknown target
dataset can be optionally provided on the initialization for relative entropy cal-
culation between trained quantum state and unknown target. The parameter

26

5.2. Tests

is called prob data real .The unknown target dataset is not used in the train-
ing process but only provides additional information about the experiment.
Observation of real relative entropy makes sense in the context of incremen-
tal learning where target data are not precisely defined on the initialization,
and thus standard relative entropy between trained quantum state and known
training dataset does not reflect the real distance between actual and wanted
quantum states. Also, the model logs its behavior and exports the log as a
text file. Logging verbose parameter verbose is set up on the initialization.

The incremental model’s interface is designed to be flexible and indepen-
dent. Every input parameter and exposed operation are combining to cover
all learning scenarios.

5.1.2 Test environment
The test environment for simplified experimentation was developed in addition
to the model. The test environment initializes the model and conducts the
learning process. The test environment defines operations for testing incre-
mental quantum generative adversarial network on a probability distribution
learning problem. Operations can be received in real-time through Python de-
bugger input or via predefined test. Automatized tests are defined using the
model’s callback set up by set training handler function; after each epoch,
the model passes the finished epoch number and actual relative entropy as pa-
rameters to the callback. Then, the callback can send operations to the model
based on the epoch number and reached relative entropy. The complete list
of operations can be found in the project’s documentation.

Besides defined operations, the test environment logs the model’s behavior
and exports the log as a text file. Logging verbose parameter is set up on the
model’s initialization.

5.2 Tests
The most typical test cases for incremental learning of underlying processes
from sections 3.5.1 and 3.5.2 are provided below. All experiments can be
repeated with the test environment. The tests were performed with error-
free quantum simulator provided by Qiskit. Tests with noisy quantum circuit
simulator are given in appendix B.

Before running into obtained results, the data stream term should be for-
malized. Data steam D = (x1, ..., xn) is an ordered “first in, first out” queue
with underlying process samples where sample xk+1 is obtained from the real
data source quite after sample xk. After taking top l samples from a data
stream, they will be removed making D = (xl+1, ..., xn). Presented synthetic
experiments use on-demand sample generation from probability distributions
instead of raw data streams. Data stream with predefined data is represented
by DataSource class in the project’s code.

27

5. Results

5.2.1 Stationary process learning

Underlying stationary process in the test case is represented by a log-normal
probability distribution with mean µ = 1 and sigma ‡ = 1. Figure 5.1 shows
the distribution discretized and truncated into two bits version.

Figure 5.1: Histogram of discretized samples taken from log-
normal distribution, µ = 1 and ‡ = 1.

The test case is defined as following: the quantum generator is imple-
mented with RY and CZ gates; the quantum generator’s depth is 2; the
quantum generator is initialized with fair uniform distribution; the discrimi-
nator’s layers are defined with 2≠50≠20≠1 nodes; data stack size is unlimited;
every data batch contains 5 samples; the model receives one batch per 10 time
steps, i.e., learning epochs; learning rate equals to 1 ·10≠3; training starts with
1 data batch available.

Qubits number and batch size are limited due to faster computation but
intended to represent real-world scenarios on a smaller scale. Figure 5.2 shows
how relative entropy between the model’s training data and unknown target
reduces with new data passed to the model. It is seen that new training
data passed at time steps 50 and 80 slightly increase relative entropy due to
generation randomness, but for stationary underlying processes, data relative
entropy tend to converge to zero when more samples become available.

New data passed to the model also impact relative entropy between the
training dataset, i.e., target state, and samples generated by the variational
circuit. This fact is reflected in figure 5.3 presenting relative entropy during
learning. Obviously, the relative entropy changes according to the target state
changing.

28

5.2. Tests

Figure 5.2: Data relative entropy for the stationary process
learning test case.

Figure 5.3: Relative entropy for the stationary process learning
test case.

Relative entropy between unknown target and samples generated by the
variational circuit, called real relative entropy, is much more representative
because it shows convergence to the target across the whole learning process.
Figure 5.4 shows the real relative entropy graph for the test case. Note that
before time step 40, the model moves away from the target because of higher

29

5. Results

Figure 5.4: Real relative entropy for the stationary process
learning test case.

data relative entropy. This behavior can be prevented by increased initial
training data size, e.g., to 4 batches.

Figure 5.5: Comparison of incremental and original learning
methods for the stationary process learning test case.

Comparing real relative entropy obtained from the incremental model with
real relative entropy obtained from the original model helps evaluate the al-

30

5.2. Tests

gorithm’s e�ciency. Figure 5.5 presents comparison results. The original
quantum generative adversarial network was initialized the same way as the
incremental one; the only di�erence is that the original model has all 10 data
batches from the beginning, and the incremental one has initially only 1 data
batch and receives another one per 10 passed time steps. Data samples were
predefined and are identical between models to exclude randomness. The
training process for the incremental model is finished at time step 90 because
all data samples used for the original algorithm become available by the incre-
mental test case definition. At this point, i.e., time step 90, data are collected
and the original algorithm could be started. The advantage of the incremen-
tal learning model is that instead of being idle while collecting data, quantum
generator parameters were trained, reducing real relative entropy from initial
0.2039 to much lower 0.0827.

5.2.2 Non-stationary process learning

Underlying non-stationary process for the test case is defined as a log-normal
probability distribution with mean µ = 1 and sigma ‡ = 1. Figure 5.1 from
the previous section shows the distribution discretized into two bits. Because
the process is non-stationary, let it be changed to a log-normal distribution
with mean µ = 2 and sigma ‡ = 1 at time step 100. Updated distribution is
showed in figure 5.6.

Figure 5.6: Histogram of discretized samples taken from log-
normal distribution, µ = 2 and ‡ = 1.

31

5. Results

Figure 5.7: Data relative entropy for the non-stationary pro-
cess learning test case.

Figure 5.8: Relative entropy for the non-stationary process
learning test case.

The test case is defined as following: the quantum generator is imple-
mented with RY and CZ gates; the quantum generator’s depth is 2; the
quantum generator is initialized with fair uniform distribution; the discrimi-
nator’s layers are defined with 2 ≠ 50 ≠ 20 ≠ 1 nodes; data stack size is limited
to 100 samples; every data batch contains 10 samples; the model receives one

32

5.2. Tests

batch per 100 time steps; learning rate equals to 10≠3; training starts with 10
data batches available.

Data stack size is limited because of the concept drift of the underlying
distribution. Note that every data batch taken from the updated distribu-
tion after time step 100 and passed to the model will replace an irrelevant
data batch in the model’s training dataset. Figure 5.7 shows relative entropy
changes between the model’s training dataset and the unknown target repre-
sented by a log-normal distribution with mean µ = 2 and sigma ‡ = 1.

Figure 5.9: Real relative entropy for the non-stationary process
learning test case.

By the test case definition, the model learns a log-normal distribution with
mean µ = 1 and sigma ‡ = 1 for the first 100 time steps and then receives
the first data batch generated from the updated log-normal distribution with
mean µ = 2 and sigma ‡ = 1. At this point, the model’s training dataset
consists of 10% relevant and 90% irrelevant data. At time step 1000, the
model’s dataset consists of 100% relevant data.

Relative entropy between the trained and the target state is showed in
figure 5.8. Note that the model is able to keep relevant quantum state during
the whole learning process. Figure 5.9 presents real relative entropy between
unknown target, i.e., log-normal distribution with mean µ = 2 and sigma
‡ = 1, and the trained state.

The number of considered samples should be chosen according to the prob-
lem because it directly influences the time needed for transformation of a
trained state, but it is clear that even with gradual updating the target state
is reachable.

33

5. Results

5.3 Applications
The algorithm still requires O(poly(n)) gates for the quantum state prepara-
tion, but the training time for learning an underlying stationary process can
be significantly reduced as follows from section 5.2.1. Training time is one of
the most significant issues for using quantum generative adversarial networks
for quantum state preparation, and incremental learning partially solves this
problem.

On the other side, introduced lifelong learning of a non-stationary process
can be used, e.g., in the quantum finance field. Prepared quantum state with
probability distribution based on market data is used as an input for quantum
amplitude estimation algorithm to calculate option pricing [8]. The lifelong
learning of a non-stationary process can completely reduce the training time
keeping always a relevant quantum state.

Moreover, designed incremental modification of quantum generative ad-
versarial network can be applied on other problems than the probability dis-
tribution learning problem; thus, it can be used for any quantum state ap-
proximation based on some generic underlying process. Specific application
examples are di�cult to predict as the field of quantum computing is evolving
rapidly.

34

Conclusion

Incremental learning scenarios for quantum generative adversarial networks
for generic quantum state preparation were designed and described. The al-
gorithm for incremental learning of quantum generative adversarial network
was implemented and tested on the probability distribution learning problem.
Also, the test environment for easier testing and experiment repetitions was
developed.

The designed algorithm requires O(poly(n)) gates for the quantum state
preparation, the same as the original quantum generative adversarial network.
However, the developed incremental approach significantly decreases training
time for learning scenarios in which data from underlying processes become
available gradually. Moreover, the implemented model can be used for lifelong
learning of a non-stationary underlying process.

Possibly improvement of the implemented model could be training data
management. Machine learning relies heavily on training data quality, espe-
cially it is important for incremental learning strategies. The target state can
be defined poorly in case of lack of data representing the underlying process.
Statistical analysis of training data, e.g., outliers detection, can probably solve
this problem.

Another interesting continuation of this work could be applying incre-
mental quantum generative adversarial networks to other problems than the
probability distribution learning problem.

The implementation itself can be improved by making the frequency his-
togram storage policy compatible with the data stack size limitation. The
improvement can be made by capturing the frequency histogram before its
change via update operation. Combination of frequency histogram storage
policy with limitation of considered samples number will significantly reduce
memory complexity for learning concept drift processes.

The test environment also can be improved. Provided tests operate with
the simplified term time step, i.e., time spent on a learning epoch. However,
time spent on a learning epoch can di�er depending on number of samples

35

Conclusion

available for training. Thus the incremental model introduced in the sta-
tionary test case from section 5.2.1 actually receives the result earlier than its
counterpart. Valuable improvement of the test environment can be supporting
callbacks based on the real-time line instead of learning epochs.

Besides all mentioned improvements, there is a great potential for de-
signing optimalization techniques for predefined parameters according to the
problem. E.g., number of initially available data samples, batch size, learning
rate, generator’s and discriminator’s architectures, and others.

36

Bibliography

[1] Arute, F.; Arya, K.; et al. Quantum supremacy using a programmable
superconducting processor. Nature, volume 574, no. 7779, 2019: pp. 505–
510.

[2] Plesch, M.; Brukner, Č. Quantum-state preparation with universal gate
decompositions. Physical Review A, volume 83, no. 3, 2011: p. 032302.

[3] Brassard, G.; Hoyer, P.; et al. Quantum amplitude amplification and
estimation. Contemporary Mathematics, volume 305, 2002: pp. 53–74.

[4] Harrow, A. W.; Hassidim, A.; et al. Quantum algorithm for linear systems
of equations. Physical review letters, volume 103, no. 15, 2009: p. 150502.

[5] Lloyd, S.; Weedbrook, C. Quantum generative adversarial learning. Phys-
ical review letters, volume 121, no. 4, 2018: p. 040502.

[6] Dallaire-Demers, P.-L.; Killoran, N. Quantum generative adversarial net-
works. Physical Review A, volume 98, no. 1, 2018: p. 012324.

[7] Zoufal, C.; Lucchi, A.; et al. Quantum generative adversarial networks
for learning and loading random distributions. npj Quantum Information,
volume 5, no. 1, 2019: pp. 1–9.

[8] Stamatopoulos, N.; Egger, D. J.; et al. Option pricing using quantum
computers. Quantum, volume 4, 2020: p. 291.

[9] Yanofsky, N. S.; Mannucci, M. A. Quantum computing for computer sci-
entists. Cambridge University Press, 2008.

[10] Nielsen, M. A.; Chuang, I. Quantum computation and quantum informa-
tion. 2002.

37

Bibliography

[11] Chamberland, C.; Noh, K.; et al. Building a fault-tolerant quantum com-
puter using concatenated cat codes. arXiv preprint arXiv:2012.04108,
2020.

[12] Sych, D.; Leuchs, G. A complete basis of generalized Bell states. New
Journal of Physics, volume 11, no. 1, 2009: p. 013006.

[13] Low, G. H.; Yoder, T. J.; et al. Quantum inference on Bayesian networks.
Physical Review A, volume 89, no. 6, 2014: p. 062315.

[14] Bharti, K.; Haug, T.; et al. Machine learning meets quantum foundations:
A brief survey. AVS Quantum Science, volume 2, no. 3, 2020: p. 034101.

[15] Kingma, D. P.; Ba, J. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] Goodfellow, I. J.; Pouget-Abadie, J.; et al. Generative adversarial net-
works. arXiv preprint arXiv:1406.2661, 2014.

[17] Michelsanti, D.; Tan, Z.-H. Conditional generative adversarial networks
for speech enhancement and noise-robust speaker verification. arXiv
preprint arXiv:1709.01703, 2017.

[18] Huang, X.; Li, Y.; et al. Stacked generative adversarial networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 5077–5086.

[19] Zhu, J.-Y.; Park, T.; et al. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE inter-
national conference on computer vision, 2017, pp. 2223–2232.

[20] Paris, M.; Rehacek, J. Quantum state estimation, volume 649. Springer
Science & Business Media, 2004.

[21] Harris, C. R.; Millman, K. J.; et al. Array programming with NumPy.
Nature, volume 585, no. 7825, Sept. 2020: pp. 357–362, doi:10.1038/
s41586-020-2649-2. Available from: https://doi.org/10.1038/s41586-
020-2649-2

[22] Abraham, H.; AduO�ei; et al. Qiskit: An Open-source Framework for
Quantum Computing. 2019, doi:10.5281/zenodo.2562110.

[23] Kandaurov, A. Incremental learning of Quantum Generative Adversarial
Network. https://github.com/kandaart/iqgan, 2021.

[24] Gepperth, A.; Hammer, B. Incremental learning algorithms and appli-
cations. In European symposium on artificial neural networks (ESANN),
2016.

38

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/kandaart/iqgan

Bibliography

[25] Reddi, S. J.; Kale, S.; et al. On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237, 2019.

[26] Murphy, K. P. Machine learning: a probabilistic perspective. MIT press,
2012.

[27] Kullback, S.; Leibler, R. A. On information and su�ciency. The annals
of mathematical statistics, volume 22, no. 1, 1951: pp. 79–86.

39

Appendix A
Influence of the learning rate

parameter

Learning rate defines the step size at each iteration while moving toward
a minimum of a loss function [26]. In practice, the learning rate is one of
the most important parameters of the AMSGRAD optimizer used for the
quantum generator and the classical discriminator in the test cases described
in section 5.2. Di�erent values of the parameter applied to both generator’s
and discriminator’s optimizers were tested on the same test cases with the
same data to exclude randomness.

Figure A.1: Real relative entropy for the stationary process
learning test case with variable learning rate parameter.

Figure A.1 shows the influence of the learning rate parameter on the real

41

A. Influence of the learning rate parameter

relative entropy for the test case defined in section 5.2.1. Notably, value 3·10≠3

provides the best convergence result for the given test case.

Figure A.2: Relative entropy for the non-stationary process
learning test case with variable learning rate parameter.

Figure A.3: Real relative entropy for the non-stationary pro-
cess learning test case with variable learning rate parameter.

Figures A.2 and A.3 show the influence of the learning rate parameter
for the test case defined in section 5.2.2. Increased learning rate provides

42

significantly worse results for the test case as the trained state tends to diverge
from the target.

Like in classical machine learning, there is no optimal parameters suitable
for all problems. Learning rate should be chosen according to the problem
because it highly depends on the underlying process complexity and the data
stream definition.

43

Appendix B
Experiments with noisy

quantum simulator

Test cases from section 5.2 were performed with a state vector simulator pro-
vided by Qiskit. The simulator is error-free, which is suitable for research but
impossible for the actual quantum devices. Stationary process learning test
case presented here was designed for noisy quantum simulator that is similar
to a real quantum computer.

Figure B.1: Data relative entropy for the stationary process
learning test case performed with a noisy quantum simulator.

The test case is defined as following: the quantum generator is imple-
mented with RY and CZ gates; the quantum generator’s depth is 2; the
quantum generator is initialized with fair uniform distribution; the discrimi-

45

B. Experiments with noisy quantum simulator

Figure B.2: Relative entropy for the stationary process learn-
ing test case performed with a noisy quantum simulator.

Figure B.3: Real relative entropy for the stationary process
learning test case performed with a noisy quantum simulator.

nator’s layers are defined with 2≠50≠20≠1 nodes; data stack size is unlimited;
every data batch contains 500 samples; the model receives one batch per 500
time steps; learning rate equals to 1 · 10≠3; training starts with 1 data batch
available. Underlying stationary process is represented by log-normal proba-
bility distribution with mean µ = 1 and sigma ‡ = 1.

46

Appendix C
Contents of enclosed flash disk

thesis.pdf...the thesis text
iqgan..implementation sources

README.md
main.py
Algorithm

data source.py..................the data source implementation
iqgan.py the model implementation

Test
iqgan uc test.py...........the test environment implementation

Experiments
Stationary stationary process learning experiments
Non-Stationary......non-stationary process learning experiments

47

	Introduction
	Basics of Quantum Computation
	Quantum Information
	Quantum Computation
	Hadamard gate
	Pauli rotation gates
	Controlled Pauli rotation gates
	Quantum circuit

	Quantum Machine Learning
	Variational Circuits
	Generative Adversarial Network
	Quantum Generative Adversarial Network

	Incremental Quantum Generative Adversarial Network
	Training Data
	Stationary process
	Non-stationary process

	Generator
	Discriminator
	Optimizer
	Learning
	Stationary process learning
	Non-stationary process learning

	Probability Distribution Learning Problem
	Definition
	Data
	Applications

	Results
	Implementation
	Model
	Test environment

	Tests
	Stationary process learning
	Non-stationary process learning

	Applications

	Conclusion
	Bibliography
	Influence of the learning rate parameter
	Experiments with noisy quantum simulator
	Contents of enclosed flash disk

